Let , then for every it’s well defined the action of on by
Call since using Holder’s inequality
Let with , is known as a multi-index of order .
Let with an open subset, we define
The space of test functions
Note
The space of test function it’s the space together with the following convergence criterion: converges to if:
- there exists a compact set such that for all ;
- for every multi-index we have on (on ).
We use the notation .
Note that is implied my uniform convergence. The motivation for condition is clear, we don’t want limits with support wandering to infinity. The second rather strong conditions is usefull to make the continuous the linear functionals of the type:
since with uniform convergence we can carlessly exchange the limit with the integral.
This notion of convergence can be obtained as a LC-topology from a family of seminorms ( is a Topological vector space).
Distributions
Note
A linear map (or ) is called distribution if:
- is linear:
- is continuous: if then
Since this space is the topological dual we use the notation .
Example
- Every induces a distribution
Distribution which can be represented by a local function are called regular.
- The most famous not regular distribution is the Dirac’s delta:
it’s easy to see why is not regular. Suppose that there exists a function that represents the delta, then given any test function . By the absolute continuity of the Lebesgue integral we can find such that
A clear contradiction if .
Every Radon measure induces a distribution in a natural way:
in fact:
- it’s well defined since
- it’s linear and continuous by the properties of the Lebesgue’s integral
Note
Let be a Radon measure, then is representable by an function iff is absolutely continuous w.r.t. the Lebesgue measure.
Note
\mu
be a Radon measure, following Lebesgue decomposition theorem we can decompose it as\mu = \mu_{as} + \mu_s
. A measure defines a distribution via integration:Let
Using the Radon-Nikodym theorem we can write the integral with the absolutely continuous measure as
w.r.t. the Lebesgue measure. Since is Radon, it gives finite measure to every compact set, so . Clearly equality holds iff , i.e. is absolutely continuous w.r.t. the Lebesgue measure.
The following proposition is usefull to check if a given linear functional is a distribution.
Note
Let (or ) be linear. The following are equivalent:
- is a distribution
- compat s.t.
Note
T
is continous.(\impliedby)
Let\varphi_n, \varphi \in \mathcal{D}(\mathbb{R}^n)
with\varphi_n \xrightarrow{D}\varphi
. Then by the definition of convergence there existsK
compact such that\text{supp }\varphi_n \subseteq K
and for all\alpha \in \mathbb{N}
we have\Vert D^\alpha \varphi_n - D^\alpha \varphi\Vert_\infty \to 0
. To prove thatT
is continuous we need to check thatWe only need to check that
goes to zero. We can use the bound
since on the right we have a finite sum. We prove the contrapositive statement: if doesn not hold, then is not continuous (hence not a distribution). compact and s.t. with
Choose , we can construct a sequence with
The rescaled sequence is well defined, also
since
this works for any multi-index . But if we compute
hence is not continous.
Given a distribution, the above is called its order. For example any regular distribution has order , since:
where is just the integral (which is finite since ). In general any Radon measure induces a distribution of order zero:
The converse is also true by the Riesz representation theorem: Let be an order zero distributuion, then there exists unique Radon measures such that
In general for a distribution of order there exists a set of Radon measures for any multi-index of oder \leq m$$: \mu_\alpha\alpha \in \mathbb{N}^n|\alpha| \leq m$ such that
Tip
We can think of a distribution of order to depend only on derivatives of order less or equal to
Distributional derivatives
Since it makes sense to define for any differentiable function . In we would like:
so our notion of derivatives of distribution needs to be compatible with the equality above. If we apply on a test function and use integration by parts
(boundary terms are zero) the formula on the right makes sense for any distribution , and ca be generalized for all partial derivatives (note that it also holds more generally for Absolutely continuous functions).
Note
Let . The (distributional) partial derivative of w.r.t. is the distribution defined as:
Using induction see that for any multi-index
Example
In general for differentiable a.e. functions the distributional derivatives doesn’t match the a.e. derivative. Consider the Haveside function (a jump function) which has derivative a.e, but it’s distributional derivative is:
Definizione
Per definire la derivata debole, abbiamo integrato una funzione localmente integrabile con una funzione test . Possiamo interpetare questa procedura come una funzionale definito dalla che manda
Una distribuzione su è un funzionale generale, non necessariamente rappresentabile in forma integrale, es. Dirac’s delta :
ovviamente non vogliamo tutti i funzionali, ma quelli lineari, per avere uno spazio vettoriale e continui. Lo spazio delle distribuzioni è quindi il duale delle funzioni test, con somma e prodotto per scalare definiti nella maniera ovvia, Swartz indicava con il simbolo , quindi il suo duale:
Siccome ogni funzione localmente integrabile definisce la relativa distribuzione mediante l’integrale, è evidente che vale l’inclusione:
dove abbiamo commesso un abuso di notazione (le funzioni ed i rispettivi funzionali integrali). In generale ad ogni funzione in si può associare una distribuzione (integrale).
Convergenza e continutà
Prima dobbiamo definire la convergenza nello spazio di partenza, le funzioni test. Siano , , diciamo che la successione converge
se e solo se il supporto di tutte le è contenuto in un insieme compatto e le funzioni e tutte le derivate parziali convergono uniformemente in .
Definiamo quindi la continuità come al solito. La distribuzione è continua se data una successione tale che , vale:
abbiamo introdotto la notazione comune .
Derivate distribuzionali
Definiamo in maniera praticamente uguale alle derivate debolil e derivate di una distribuzione:
ben definito perchè è una mappa lineare e continua.
Osservazioni
Le derivate deboli non sempre esistono, mentre quelle distribuzionali esistono sempre, sono !!!. Data la somiglianza spesso i termini derivata debole e distribuzionale vengono usati come sinonimi, ma sono cose diverse! (spazi diversi), infatti la derivata debole (quando esiste) è rappresentata da una funzione localmente integrabile, cosa non sempre vera per le distibuzioni.