Theorem Let J⊂I a finite subset of the state space of an irreducible Markov chain (Xn)n≥0. Define the the stopping time
τ:=inf{n≥0:Xn∈/J}
Then there exists constant c1,c2∈(0,∞) such that
Pi(τ>r)≤c1e−c2r,∀r∈N
in particular Pi(τ<∞)=1 and Ei[τ]<∞.
Proof Let T such that ∀i∈J ∃n≤T so that there is a path i=i0,i1,⋯in−1,in with just in∈/J and positive probability:
pi0,i1…pin−1,in>0
For all i∈J let
qi:=Pi(τ≤T)≥Pi(X0=i0,…Xn=in)=pi0,i1…pin−1,in>0
Let
q:=min{qi:i∈J}
Pi(τ>n)=j∈I∑Pi(τ>n,Xn−T=j)
{τ>n}={τ>n−T}∩{∀t∈[n−T,n],Xt∈J}
call the last event B.
Then
Pi(τ>n)=j∈J∑Pi(τ>n−T,B,Xn−T=j)
=j∈J∑Pi(B∣τ>n−T,Xn−T=j)Pi(τ>n−T,Xn−T=j)
=j∈J∑Pi(B∣Xn−T=j)Pi(τ>n−T,Xn−T=j)
using the Markov property
=j∈J∑Pj(∀t∈[0,T],Xt∈J)Pi(τ>n−T,Xn−T=j)
=j∈J∑Pj(τ>T)Pi(τ>n−T,Xn−T=j)
≤j∈J∑(1−q)Pi(τ>n−T,Xn−T=j)
=(1−q)Pi(τ>n−T)
repeating this with now n=n−T, we get
Pi(τ>n)≤(1−q)2Pi(τ>n−2T)≤(1−q)3Pi(τ>n−3T)
≤(1−q)⌊Tn⌋Pi(τ>n−⌊Tn⌋T)
≤(1−q)Tn−1=1−q1[(1−q)T1]n=c1e−c2n
where
c1=1−q1c2=−T1log(1−q)>0
Counterexample If J is not finite, there are counterexamples.
Consider the state space {1,2,…}∪{ω}, let J={1,2,…}.
The transition probabilty are defined as follows:
pi,ω=(i+1)21pi,i+1=1−pi,ω
this chain, if started in J tends towards −∞, however every vertex in J is connected to ω, this measn that T=1. But the min of the qi is note defined, their inf is zero.
Clearly. starting from any i∈J, the probability of never reaching ω is the same as always going down:
Pi(τ=∞)=n=i∏∞(1−(n+1)21)>0
since
n=i∏∞(1−(n+1)21)=i+1i>0
in particular P1(τ=∞)=1/2.